What is Data Mining?

DAMA-NCR

•Tuesday, November 13, 2001 •Laura Squier •Technical Consultant •Isquier@spss.com

Agenda

- What Data Mining IS and IS NOT
- Steps in the Data Mining Process

 CRISP-DM
 - Explanation of Models
 - Examples of Data Mining Applications
- Questions

The Evolution of Data Analysis

return

SP

Evolutionary Step	Business Question	Enabling Technologies	Product Providers	Characteristics
Data Collection (1960s)	"What was my total revenue in the last five years?"	Computers, tapes, disks	IBM, CDC	Retrospective, static data delivery
Data Access (1980s)	"What were unit sales in New England last March?"	Relational databases (RDBMS), Structured Query Language (SQL), ODBC	Oracle, Sybase, Informix, IBM, Microsoft	Retrospective, dynamic data delivery at record level
Data Warehousing & Decision Support (1990s)	"What were unit sales in New England last March? Drill down to Boston."	On-line analytic processing (OLAP), multidimensional databases, data warehouses	SPSS, Comshare, Arbor, Cognos, Microstrategy,NCR	Retrospective, dynamic data delivery at multiple levels
Data Mining (Emerging Today)	"What's likely to happen to Boston unit sales next month? Why?"	Advanced algorithms, multiprocessor computers, massive databases	SPSS/Clementine, Lockheed, IBM, SGI, SAS, NCR, Oracle, numerous startups	Prospective, proactive information delivery

Results of Data Mining Include:

- Forecasting what may happen in the future
- Classifying people or things into groups by recognizing patterns
- Clustering people or things into groups based on their attributes
- Associating what events are likely to occur together
- Sequencing what events are likely —to lead to later events

Data mining is not

- Brute-force crunching of bulk data
- "Blind" application of algorithms
- Going to find relationships where none exist
- Presenting data in different ways
- A database intensive task

•A difficult to understand technology requiring an advanced degree in computer science

Data Mining Is

- •A hot buzzword for a class of techniques that find patterns in data
- •A user-centric, interactive process which leverages analysis technologies and computing power
- •A group of techniques that find relationships that have not previously been discovered
- •Not reliant on an existing database
- •A relatively easy task that requires knowledge of the business problem/subject matter expertise

Data Mining versus OLAP

•OLAP - On-line Analytical Processing

return

 Provides you with a very good view of what is happening, but can not predict what will happen in the future or why it
 is happening

Data Mining Versus Statistical Analysis

Data Mining

- Originally developed to act as expert systems to solve problems
- Less interested in the mechanics of the technique
- If it makes sense then let's use it
- Does not require assumptions to be made about data
- Can find patterns in very large amounts of data
- Requires understanding of data and business
 nroblem

Data Analysis

- Tests for statistical correctness of models
 - Are statistical assumptions of models correct?
 - Eg Is the R-Square good?
- Hypothesis testing
 - Is the relationship significant?
 - Use a t-test to validate significance
- Tends to rely on sampling
- Techniques are not optimised for large amounts of data
- Requires strong statistical skills

Examples of What People are Doing with Data Mining:

Fraud/Non-Compliance Anomaly detection

return

- Isolate the factors that lead to fraud, waste and abuse
- Target auditing and investigative efforts more effectively
- Credit/Risk ScoringIntrusion detection

Parts failure prediction

•Recruiting/Attracting customers

•Maximizing profitability (cross selling, identifying profitable customers)

•Service Delivery and Customer Retention

> Build profiles of customers likely to use which services

•Web Mining

How Can We Do Data Mining?

By Utilizing the CRISP-DM Methodology

- a standard process
- existing data
- software technologies
- situational expertise

Why Should There be a Standard Process?

The data mining process must be reliable and repeatable by people with little data mining background. •Framework for recording experience

- Allows projects to be replicated
- •Aid to project planning and management
- •"Comfort factor" for new adopters
 - Demonstrates maturity of Data Mining
 - Reduces dependency on "stars"

Process Standardization

CRISP-DM:

- CRoss Industry Standard Process for Data Mining
- Initiative launched Sept.1996
- SPSS/ISL, NCR, Daimler-Benz, OHRA
- Funding from European commission
- Over 200 members of the CRISP-DM SIG worldwide
 - DM Vendors SPSS, NCR, IBM, SAS, SGI, Data Distilleries, Syllogic, Magnify, ..
 - System Suppliers / consultants Cap Gemini, ICL Retail, Deloitte & Touche, …
 - End Users BT, ABB, Lloyds Bank, AirTouch, Experian, ...

CRISP-DM

- Non-proprietaryApplication/Industry
- neutral
- Tool neutral
- Focus on business issues
 - As well as technical analysis
- Framework for guidance
- Experience base
 - Templates for Analysis

The **CRISP-**DM Process Model

Why CRISP-DM?

•The data mining process must be reliable and repeatable by people with little data mining skills

•CRISP-DM provides a uniform framework for –guidelines

-experience documentation

•CRISP-DM is flexible to account for differences —Different business/agency problems —Different data

Phases and Tasks

Phases in the DM Process: CRISP-DM

Phases in the DM Process (1 & 2)

Business Understanding:

- Statement of Business Objective
- Statement of Data Mining objective
- Statement of Success
 Criteria

- Data Understanding
 - Explore the data and verify the quality
 - Find outliers

Phases in the DM Process (3)

- Data preparation:
 - Takes usually over 90% of our time
 - Collection
 - Assessment
 - Consolidation and Cleaning
 - table links, aggregation level, missing values, etc
 - Data selection
 - active role in ignoring noncontributory data?
 - outliers?
 - Use of samples
 - visualization tools
 - **Transformations create new**

Phases in the DM Process (4)

- Model building
 - Selection of the modeling techniques is based upor the data mining objective
 - Modeling is an iterative process - different for supervised and unsupervised learning

May model for either description or prediction

Types of Models

•Prediction Models for Predicting and Classifying

return

- Regression algorithms (predict numeric outcome): neural networks, rule induction, CART (OLS regression, GLM)
- Classification algorithm predict symbolic outcome): CHAID, C5.0

(discriminant analysis,

logistic regression)

- •Descriptive Models for Grouping and Finding Associations
 - Clustering/Grouping algorithms: Kmeans, Kohonen
 - Association algorithms: apriori, GRI

Neural Network

Neural Networks

- Description
- Difficult interpretation
- Tends to 'overfit' the data
- Extensive amount of training time
- A lot of data preparation
- Works with all data types

Rule Induction

Description

return

- Produces decision trees:
 - income < \$40K
 - job > 5 yrs then good risk
 - job < 5 yrs then bad
 risk
 - income > \$40K
 - high debt then bad risk
 - low debt then good risk

– Or Rule Sets:

- Rule #1 for good risk:
 - if income > \$40K
 - if low debt
 - Rule #2 for good risk:
 - if income < \$40K</p>
 - if job > 5 years

			Data	
/	underst		Date Date	
	Deployment			1
/	\prime	Evaluate		/
	$\overline{\ }$	2vincato		

Rule Induction

Description

- Intuitive output
- Handles all forms of numeric data, as well as non-numeric (symbolic) data

C5 Algorithm a special case of rule induction

• Target variable must be symbolic

Apriori

Description

- Seeks association rules in dataset
- 'Market basket' analysis
- Sequence discovery

Kohonen Network

Description

- unsupervised
- seeks to describe dataset in terms of natural clusters of cases

Phases in the DM Process (5)

Model Evaluation

return

- Evaluation of model: how well performed on test data
- Methods and criteria depend of model type:
 - e.g., coincidence matrix with classification models, mean error rate with regression models

 Interpretation of model: important or not, easy or hard depends on algorithm

Phases in the DM Process (6)

Deployment

- Determine how the results need to be utilized
- Who needs to use them?
- How often do they need to be used
- Deploy Data Mining results by:
 - Scoring a database
 - Utilizing results as business rules
 - interactive scoring on-line

Specific Data Mining Applications:

What data mining has done for... IRS

The US Internal Revenue Service needed to improve customer service and...

Scheduled its workforce to provide faster, more accurate answers to questions.

What data mining has done for...

The US Drug Enforcement Agency needed to be more effective in their drug "busts" and

analyzed suspects' cell phone usage to focus investigations.

What data mining has done HSBC (****)

HSBC need to cross-sell more effectively by identifying profiles that would be interested in higher yielding investments and...

Reduced direct mail costs by 30% while garnering 95% of the campaign's revenue.

Final Comments

- Data Mining can be utilized in any organization that needs to find patterns or relationships in their data.
- By using the CRISP-DM methodology, analysts can have a reasonable level of assurance that their Data Mining efforts will render useful, repeatable, and valid results.

Questions?

